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Abstract: Nowadays,  inorganic  CsPbI3 perovskite  solar  cells  (PSCs)  have  become  one  of  the  most  attractive  research  hotspots
in photovoltaic field for its superior chemical stability and excellent photo-electronic properties. Since the first independent re-
port  in  2015,  the  power  conversion  efficiency  (PCE)  of  CsPbI3 based  PSCs  has  sharply  increased  from  3.9%  to  19.03%.  Import-
antly,  during  the  developing  process  of  CsPbI3 PSCs,  HI  hydrolysis-derived  intermediate  plays  an  important  role:  from  stabiliz-
ing the crystal structure,  optimizing the fabricated film to boosting the device performance. In this review, the different crystal
and  electronic  structures  of  CsPbI3 are  introduced.  We  then  trace  the  history  and  disputes  of  HI  hydrolysis-derived  intermedi-
ate to make this review more logical. Meanwhile, we highlight the functions of HI hydrolysis-derived intermediate, and systemat-
ically  summarize  the  advanced  works  on  CsPbI3 PSCs.  Finally,  the  bottlenecks  and  prospects  are  revealed  to  further  increase
the CsPbI3 PSCs performance.
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1.  Introduction

Since  the  first  organic–inorganic  hybrid  perovskite  solar
cell (PSCs) was proposed by Miyasaka’s group[1], its power con-
version  efficiency  (PCE)  has  sky-rocketed  from  3.8%  to  25.2%
over  the  past  decade[2−4].  This  quick  growth  rate  has  made  it
as a hotspot in recent years because of its fascinating proper-
ties, such as high absorption coefficient[5, 6], low exciton bind-
ing  energy[7−9],  tunable  band  gap[10, 11],  long  carrier  diffusion
length[12, 13],  and  superb  carrier  mobility[14, 15].  Though  great
progresses have been achieved in term of its PCE, there still ex-
ist some problems. Volatility and hygroscopic A-site cations de-
compose  the  perovskite  structure  under  extreme  environ-
ment and destroy the performance of the device[16−21].

CsPbX3 is a promising candidate to conquer these proble-
ms because Cs+ is the most feasible inorganic cation to replay
volatility  and  hygroscopic  A-site  with  suitable  tolerance  fact-
or[22−26].  Besides,  the  structures  of  organic  cation  (e.g.,  CH3-
NH3

+)  have orientation freedom, while Cs+ is  symmetric with-
out a multiple structure, which make hybrid perovskites show
an  unstable  structure  under  extreme  environments[27−31].
Among all  of  the CsPbX3 materials,  CsPbI3 with a  bandgap of
~1.7  eV  is  a  suitable  and  promising  candidate  for  high  per-
formance and stable output photovoltaic material[32−34].

CsPbI3 has four different phases (cubic (α),  tetragonal (β),
orthorhombic  (γ)  and  non-perovskite  yellow  (δ)  phase)  and
each  phase  transforms  under  different  temperatures[35].  At

room  temperature  (RT),  CsPbI3 will  finally  transfer  into  non-
perovskite  phase  (δ-phase)  with  an  unsuitable  bandgap  of
2.75  eV,  which  limits  its  practical  application[36−38].  Many  re-
searchers  have  conducted  a  series  of  methods  to  conquer
this  problem[39−41].  In  the  CsPbI3 PSCs  development  process,
HI  hydrolysis-derived  intermediate  plays  an  important
role[42−44]:  stabilizing  the  crystal  structure,  optimizing  the  fa-
bricated film and improving the device performance.

In  this  review,  we  aim  to  summarize  the  latest  works
about  CsPbI3 PSCs  based  on  HI  hydrolysis-derived  intermedi-
ate.  First,  we briefly  review the  different  crystal  and electron-
ic  structures  of  CsPbI3.  We  then  trace  the  history  and  dis-
putes  of  HI  hydrolysis-derived  intermediate  to  make  this  re-
view more logical. Afterward, we highlight the functions of HI
hydrolysis-derived  intermediate,  and  systematically  summar-
ize some advanced works about HI hydrolysis-derived interme-
diate  on  CsPbI3 PSCs.  Finally,  present  issues  and  outlines  are
discussed to further increase the CsPbI3 PSCs performance.

2.  Crystal/electronic structure

Photo-electric  properties  (e.g.,  optical  transitions,  char-
ger  transfer)  are  greatly  related  to  crystal  and  electronic  pro-
perties  (e.g.,  phase  transition,  energy  band)[45−47].  In  this  sec-
tion,  we  mainly  discuss  the  CsPbI3 perovskite  from  two  as-
pects: crystal structure and electronic structure.

2.1.  Crystal structure

The  CsPbI3 perovskite  structure  can  be  described  as:  Pb-
site  and  I-site  ion  form  a  corner  sharing  [PbI6]4– octahedron,
while the Cs cation resides in the cuboctahedral cavities[48, 49].
There  are  mainly  four  types  of  structures:  cubic  structure  (α,
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̄Pm m), tetragonal structure (β, P4/mbm), orthorhombic struc-
ture  (γ,  Pbnm),  and  non-perovskite  phase  (δ,  Pnma)[46],  as
shown  in Fig.  1(a).  CsPbI3 possesses  an  unsuitable  Gold-
schmidt  tolerance  factor  (t)  in  the  range  of  0.81–0.84,  which
is  smaller  than  the  ideal  value  (t,  0.9–1)  and  leads  an  un-
stable  perovskite  structure[50].  The  transitions  of  each  phase
in different temperatures are shown in Fig. 1(b)[35].

The detailed transition temperature between each phase
was researched by Even et al., based on density functional the-
ory (DFT) analyzation. The increasing thermal parameters of I–

tended to strength the dynamic motion of the corner-connec-
ted  [PbI6/2]– octahedral,  which  further  induced  a  change  of
the  unit  cell  volume  and  made δ-phase  transformed  to α-
phase at  595 K.  Then,  with dynamic states  gradually  relaxing,
α-phase  transitions  to β-phase  at  539  K; β-phase  transitions
to γ-phase  at  425  K;  finally γ-phase  turns  to  yellow  non-per-
ovskite phase (δ-phase) at RT[46].

The  different  stability  of  each  phases  can  be  ascribed  to
the  different  dissociated  energies.  The  dissociation  energy
from  CsPbI3 to  CsI  and  PbI2 for α-, γ-,  and δ-phase  are  0.04,
–0.09  and  –0.16  eV,  respectively. δ-phase  CsPbI3 shows  a
small  Pb–I–Pb  bond  angel  (95.09°  and  91.40°)  than α-phase
CsPbI3 (180°) and γ-phase CsPbI3 (154.74°),  which reduces the
orbital  overlap  between  Pb  and  I  atoms  and  also  makes δ-
phase  CsPbI3 with  a  deeper  defect  transition  energy  level
than α-, γ-phase.  This  indicates  that δ-phase  is  the  most
stable  phase  because  of  its  lowest  dissociation  energy[51].
Most  importantly,  different  cooling  rates  change  the  forma-
tion  energies  for  CsPbI3 phases. α-phase  converts  to γ-phase
when  rapidly  cooled  in  dry  air,  while  slowly  cooling  leads  to
δ-phase phase because of different formation energies[52]. Be-
sides,  changing the temperature to cause the structure trans-
ition,  a  polar  solvent  also  induces  lattice  distortion  in  CsPbI3.
A  polar  solvent  would  induce  the  lattice  distortion  of  CsPbI3

nanocubes  by  triggering  the  dipole  moment,  which  leads  to
the  self-assembly  from α-CsPbI3 to  a γ-phase  through  orien-

ted  attachment  process[53].  These  studies  indicate  that  meta-
stable  phases  (contained β, γ-phase  CsPbI3)  are  more  prom-
ising than α-CsPbI3.

2.2.  Electronic structure

The  valence  band  maximum  (VBM)  of  CsPbI3 perovskite
is constituted of antibonding hybridized Pb 6s and X np orbit-
als,  among  which  X  np  takes  the  lead.  However,  Pb  6p  is  in
the  dominant  place  of  conduction  band  minimum  (CBM),  as
shown  in Fig.  1(c)[54].  Compared  with  organic  A-site  cations,
Cs+ has  little  effect  on  CsPbI3 electronic  properties.  A-site
cations  could  indirectly  influence  perovskite  electronic  pro-
perties  through  Coulombic  interactions  and  steric  hindrance
to deform the perovskite lattice, which makes perovskite elec-
tronic  structure close to the band edges and further  changes
the band gap energetics[55].

The calculated electronic of α-, β- and γ-CsPbI3 are depic-
ted  in Figs.  1(d) and 1(e)[46].  According  to  the  tight-binding
(TB) and DFT structures, taking band folding into account, we
can  vividly  draw  that  all  the  different  band  gaps  of  CsPbI3

phases  are  direct,  and  the  band  gap  of α-CsPbI3 shifts  from
the  R  point  in  the  Brillouin  zone  to  Z  and  Γ  for β-CsPbI3 and
γ-CsPbI3, respectively. This change indicates that the electron-
ic  band  gap  gradually  increases  with  the  transition  from α-
CsPbI3 to more distorted β-  and γ-CsPbI3 because the [PbI6]4–

rotations stabilize the top of VBM and destabilize the bottom
of CBM[56].

3.  The functions of HI hydrolysis-derived
intermediate

We  summarize  the  performance  of  CsPbI3 PSCs  after  in-
troducing HI hydrolysis-derived intermediate in Table 1 (sPCE
is  the  stable  PCE).  Its  main  functions  can  be  summarized
as following:

1) Reducing crystallization energy barrier in low temperat-
ure fabrication;
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Fig. 1. (Color online) (a) The structure and transition of CsPbI3 phases versus temperature. Reproduced with permission[46]. Copyright 2018, Americ-
an Chemical  Society  Publications.  (b)  The transition of  CsPbI3 thermal  phase and their  transition mechanism.  Reproduced with  permission[35].
Copyright 2019, Science Publishing Group. (c) Schematic of bonding/antibonding orbitals in CsPbX3.  Reproduce with permission[54].  Copyright
2016,  American  Chemical  Society  Publications.  (d)  Electronic  band  structure  of  CsPbI3 calculated  by  DFT  and  (e)  tight-binding  model.  Repro-
duced with permission[46]. Copyright 2018, American Chemical Society Publications.
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2)  Increasing  iodide  coordination  numbers  to  decrease
structural  disorder,  modifying  structure  and  forming  higher-
order iodoplumbate complexes;

3) Slowing down the rapid crystalline process and obtain-
ing high-quality CsPbI3 film;

4)  Inducing  strain  to  generate  distorted  metastable
phase (β- and γ- CsPbI3);

5) Modifying the band gap of perovskites films.

4.  History and disputes of HI hydrolysis-derived
intermediate

The solution one-step method has advantages of  simple,
convenience  and  facile  process,  and  can  also  be  compatible
roll-to-roll  fabrication  technology[57].  However,  the  one-step
deposition  process  shows  poor  morphology  and  low  perfor-
mance  because  of  the  rapid  reaction  in  the  solution.  The
common  solution  is  using  intermediates  to  slow  down  the
quick  reaction  and  make  it  controllable.  However,  under-
standing  the  composition  of  the  HI  hydrolysis-derived  inter-
mediate still needs a long time.

4.1.  HI

In the early stage,  researchers focused on using HI  addit-
ive  in  CsPbI3 PSCs  fabrication  to  cause  a  microstrain  and  in-
duce a low temperature phase transition process. Meanwhile,
extra halides in HI precursor solution tended to fill  the vacan-
cies of perovskites, resulting in change of metal–halogen–met-
al bond connectivity, and consequently cell volumes and optic-
al bandgap[58].  Besides, PbI2 first coordinated with DMF in the

precursor  through  Pb–O  bonds,  but  further  added  HI  would
eliminate  PbI2–DMF  coordination  and  form  higher-order  iod-
oplumbate  complexes  (e.g.,  PbI4

2−,  PbI5
3−,  and  PbI6

4−),  which
benefited the formation of high-quality CsPbI3 film[59, 60].

In  2015,  HI  was  first  used  as  an  additive  in  CsPbI3 PSCs.
Snaith et  al.  introduced  a  small  amount  of  HI  in  the  precurs-
or  solution  before  spin-coating.  They  found  that  HI  additive
could  change  the  solubility  of  precursor  materials  and  in-
duce  a  strain  to  lower  the  temperature  phase  transition.
Then,  strain  triggered  small  crystals  appearing  and  signific-
antly stabilized its structure in RT, as shown in Fig. 2(a)[42]. Ud-
din et  al.  controlled  the  concentration  of  HI  on  purpose  to
modify  CsPbI3 bandgap.  They demonstrated that  introducing
36 μL/mL HI would decrease the bandgap from 1.75 eV to op-
timized value of 1.7 eV and show excellence electronic proper-
ties  with  low  charge-transport  (12.8  kΩ).  From  the  scanning
electron  microscopy  (SEM)  images,  optimal  concentration  HI
additive led to the appearance of small grain sizes with a few
nanometers,  which  is  beneficial  to  increase  the  stability  of
black  phase  CsPbI3

[61].  This  conclusion  was  also  proven  by
Kim et  al.,  who  found  that  HI  formed  small  grains  and  stabil-
ized the black phase of CsPbI3 at low temperature[62]. Further-
more,  they  investigated  the  function  of  NH4

+ (e.g.,  NH4Cl,
NH4Br and NH4I)  and H+ (HCl,  HBr and HI)  based additive and
found that HI additive is the most efficient, and which could re-
duce  the  roughness  and  increase  the  stability  of  perovskites
films.  In  particular,  when  it  was  exposed  in  ambient  for  3  h,
the  optimal  device  with  CsPbI3 perovskite  only  dropped  its
PCE from 3.55% to 2.78%[63].

Table 1.   Photovoltaic parameters of CsPbI3 PSCs fabricated by HI hydrolysis-derived intermediate.

Material Configuration JSC (mA/cm2) VOC (V) FF (%) PCE (%) sPCE (%) Ref.

α-phase CsPbI3

ITO/PEDOT:PSS/CsPbI3/PCBM/BCP/LiF/Al 8.17 0.870 69.0 4.88 – [62]
ITO/PEDOT:PSS/CsPbI3/PCBM/BCP/LiF/Al 5.89 0.960 64.0 3.66 – [63]
FTO/TiO2/CsPbI3·xEDAPbI4/Spiro/Ag 14.53 1.150 71.0 11.86 – [78]
FTO/TiO2/CsPbI3/Carbon 18.50 0.790 65.0 9.50 – [68]
ITO/SnO2/LiF/CsPbI3-xBrx/Spiro/Au 18.30 1.234 82.6 18.64 – [70]
FTO/TiO2/CsPbI3-x-DETAI3/P3HT/Au 12.21 1.060 61.0 7.89 – [67]
FTO/PTAA/OTG3-CsPbI3/PCBM/BCP/Ag 15.81 1.120 75.2 13.32 13.20 [80]
FTO/TiO2/PEAI-CsPbI3/Spiro/Ag 18.40 1.110 69.6 14.30 13.50 [79]

Metastable (β- and γ-)
phase CsPbI3

FTO/TiO2/CsPbI3/PTAA/Au 18.95 1.059 74.9 15.07 – [43]
FTO/NiOx/STCG-CsPbI3/ZnO/ITO 18.29 1.090 80.5 16.04 – [84]
FTO/TiO2/CsPbI3/PTAA/Au 19.75 1.135 76.6 17.17 16.83 [86]
N-CQDs EDS/FTO/TiO2/CsPbI3/PTAA/Au 19.15 1.106 75.6 16.02 15.90 [89]
FTO/TiO2/CsPbI3/PTAA/Au 18.31 1.110 78.0 15.91 – [85]
FTO/TiO2/CsPbI3/PTAA/Au 20.34 1.090 77.0 17.03 – [88]
FTO/TiO2/CsPbI3/PTAA/Au 21.15 1.090 77.0 17.30 16.78 [76]
FTO/TiO2/CsPbI3/P3HT/Au 16.53 1.040 65.7 11.30 9.70 [83]
FTO/TiO2/CsPbI3/PTAA/Au 19.58 1.084 75.7 16.07 15.47 87]
FTO/TiO2/CsPbI3/UCNP-PTAA/Au 19.17 1.113 74.3 15.86 15.59 [90]
FTO/TiO2/CsPbI3/PTAA/Au 20.30 1.080 75.5 16.24 – [91]

Low dimension CsPbI3

FTO/TiO2/CsPbI3/PTAA/Au 19.51 0.993 70.5 13.65 13.29 [98]
ITO/PTAA/CsPbI3/C60/BCP/Cu 17.21 1.090 67.5 12.65 – [101]
ITO/SnO2/CsPbI3/Spiro/Au 16.59 1.070 70.0 12.40 – [97]
FTO/TiO2/CsPbI3/Carbon 15.76 0.910 66.0 9.39 – [99]

DMAxCs1–xPbI3

FTO/TiO2/DMA0.15Cs0.85PbI3/Spiro/Ag 19.40 1.050 75.0 15.30 – [75]
FTO/TiO2/DMAI-CsPbI3/Spiro/Ag 20.23 1.137 82.7 19.03 – [74]
FTO/TiO2/Cs0.5DMA0.5PbI3/Spiro/Ag 18.40 1.054 74.0 14.30 – [72]
ITO/PEDOT:PSS/Cs0.7DMA0.3PbI3/C60/BCP/Ag 16.65 0.990 76.5 12.62 – [71]
FTO/TiO2/DMAI-CsPbI3/Spiro/Ag 20.23 1.110 82.0 18.40 – [73]
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4.2.  PbI2·xHI or HPbI3

In addition to HI additive, HI hydrolysis-derived intermedi-
ate is more effective because it eliminates water in the HI solu-
tion and is  an intermediate compound to increase perovskite
crystallinity[64].  It  was  first  proposed  in  2015  by  Zhao et  al.
They  developed  a  new  precursor  compound  (named  HPbI3)
through  a  reaction  of  HI  and  PbI2 in  DMF  solution,  and  used
it  to  replace  PbI2 in  fabrication  FAPbI3-based  PSCs,  as  shown
in Fig.  2(b)[65].  Such  HPbI3 has  a  pseudo-3D  crystal  structure,
where 1D face-shared [PbI6]4– octahedra with intercalated pro-
tons (H+) for charge balance[66].

Zhu et  al.  introduced  HPbI3 into  the  CsPbI3 PSCs  and  as-
sisted with  a  triple  cation NH3

+C2H4NH2
+C2H4NH3

+ (named as
DETA3+)  to further stabilize the α-CsPbI3 perovskite phases[67].
Subsequently,  Chen et  al.  used  HPbI3 to  substitute  PbI2 and
found  that  tensile  lattice  strain  appeared  in  HPbI3-process
CsPbI3 perovskite[68].  The  tensile  lattice  strain  generated  be-
cause  HPbI3 crystals  serve  as  a  template  to  guide  the  nucle-
ation  and  growth  of α-CsPbI3.  A  similar  work  was  conducted
by Zhao et al., who introduced the I-excess precursor HPbI3+x

and  replace  PbI2 to  reduce  crystallization  energy  barrier,  and
fabricated α-CsPbI3–xBrx PSCs  in  low  temperature  (130  °C).
The champion PCE of 13.61% was measured by a reverse scan-
ning, as shown in Fig.  2(c)[69].  More recently,  in order to over-
come  the  low  PCE  problem  of  CsPbI3-based  PSC,  You et  al.
used CsI, HPbI3+x and PbBr2 as precursor to fabricate high-qual-
ity  CsPbI3–xBrx perovskite  films.  They  developed  an  inorganic
shunt-blocking  layer  lithium  fluoride  (LiF)  in  the  ETL/per-
ovskite  interface  to  align  the  bandgap  and  suppress  the  sur-
face defect. Furthermore, a small amount of PbCl2 were intro-
duced to further suppress the recombination. Finally, they ob-

tained CsPbI3–xBrx with the highest  PCE of  18.64%,  and boos-
ted VOC to 1.25 V with little loss. After continuous 1 sun equival-
ent  illumination,  the  best  device  dropped  only  6%  of  its  ini-
tial PCE after 1000 h[70].

4.3.  PbI2·xDMAI or DMAPbI3

Kanatzidis et  al.  recently  claimed that  HPbI3 did not  exist
and  was  replaced  by  a  compound  of  DMAPbI3,  which  gener-
ated through DMF hydrolysis in HI solution. Importantly, they
pointed  out  that  some  early  reports  of  inorganic  perovskite
are  actually  the  hybrid  perovskite.  They  found  that  DMAPbI3

possessed a larger tolerance factor and mixing with Cs+ could
adjust  tolerance factor  (t)  of  the  compounds  (Cs1−xDMAxPbI3)
toward an ideal factor (t, 0.9–1). Finally, they achieved a cham-
pion  PCE  of  12.62%  in  Cs1−xDMAxPbI3-based  PSCs,  as  shown
in Fig.  2(d)[71].  Liu et  al.  dissolved  PbI2 and  HI  in  DMF  to  syn-
thesize  DMAPbI3 and  further  confirmed  that  no  HPbI3 exis-
ted.  They  used  it  as  precursor  to  fabricate  high-quality
CsxDMA1−xPbI3 perovskite  films  with  14.3%  PCE,  and  the  ini-
tial  PCE  kept  more  than  85%  when  exposed  in  air  20  days
without encapsulation, as shown in Fig. 3(a)[72].

Zhao et  al.  used  PbI2·xDMAI  to  fabricate  CsPbI3 PSCs  re-
cently,  and  they  concluded  that  the  fabricated  perovskites
are  actually  all  inorganic  composition  because  the  organic
ion DMA+ are easily lost during the high-temperature (210 °C)
annealing process[73].  Later,  they proved that DMAI is  a volat-
ile additive, and used it to assist with phenyltrimethylammoni-
um  chloride  (PTACl)  passivation.  Finally,  they  obtained  the
highest  PCE  of  CsPbI3 PSC,  19.03%,  as  shown  in Fig.  3(b)[74].
This conclusion was also confirmed by Pang et al., who found
that DMAPbI3 and Cs4PbI6 first formed in annealing 100 °C for
10  min.  When  the  annealing  temperature  was  increased  to
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Fig. 2. (Color online) (a) The diagrammatic of HI fabricated CsPbI3. Reproduced with permission[42]. Copyright 2015, The Royal Society of Chem-
istry. (b) Schematic of using HPbI3 to fabricate FAPbI3 PSCs. Reproduced with permission[65]. Copyright 2015, Wiley-VCH Publications. (c) Detail in-
formation of PbI2 and HPbI3 fabricated perovskite film. Reproduced with permission[69]. Copyright 2018, Wiley-VCH Publications. (d) The molecu-
lar structure of FA and DMA, and the tolerance factor of corresponding perovskite (CsPbI3, Cs0.7DMA0.3PbI3 and DMAPbI3). Reproduced with per-
mission[71]. Copyright 2018, Nature Publishing Group.
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180  °C  for  15  min,  DMAPbI3 converted  into  DMA0.15Cs0.85PbI3

with a small amount Cs4PbI6 residue. Once the annealing tem-
perature  exceeded  200  °C,  the γ-phase  CsPbI3 was  formed
with  a  small  number  of  DMA0.15Cs0.85PbI3 residue.  The  num-
ber  of  DMA0.15Cs0.85PbI3 greatly  decreased  and  a  little δ-
phase appeared, as shown in Fig. 3(c)[75].

Our  groups  also  confirmed  this  conclusion.  We  synthesi-
zed a series of intermediate compounds (DMAI and DMAPbI3)
by  different  ratio  of  HI/DMF,  and  used  them  to  fabricate
CsPbI3 PSCs.  After  detailed  analysis,  we  found  that  the  major
component of CsPbI3 was still inorganic in this reaction route.
Most of DMA+ organic molecules lost during the annealing pro-
cess,  and only  a  small  amount of  DMA+ remained to stabilize
perovskite  structure.  Excessive  DMA+ interacted  with  Pb2+ to
further passivate CsPbI3 surface, as shown in Fig. 3(d)[76].

In  conclusion,  the  organic  molecule  DMAI  mainly  influ-
ence the crystallization kinetics  and perovskite  phase.  During
the  annealing  process,  DMAI  will  sublimate  quickly,  change
the  rate  of  crystallization  and  form  metastable  (β-  and γ-)
phase  based  CsPbI3.  The  controllable  crystallization  kinetics
and  stable  (β-  and γ-)  phase  are  beneficial  to  morphology
and  stability  of  perovskite,  respectively.  Besides,  DMA+

(2.72  Å)  possesses  a  larger  ionic  radius  than  Cs+ (1.88  Å)[77].
Therefore,  if  the  DMA+ is  residual  (non-sublimate)  in  the
CsPbI3 film:  (1)  DMA+ doped  into  the  lattice  of  CsPbI3 can  in-
crease its tolerance factor for avoiding crystal structure distor-
tion;  (2)  DMA+ reacted  with  Pb2+ to  passivate  CsPbI3 surface,
further  reducing  leakage  current  generation  for  increasing
the device performance.

5.  Applying HI hydrolysis-derived intermediate in
CsPbI3 PSCs

5.1.  α-phase CsPbI3 based PSCs

As  we  discussed  earlier,  HI  hydrolysis-derived  intermedi-

ate  showed  a  lot  of  advantages  in  high-quality  film  fabrica-
tion  and  device  performance.  Importantly,  perovskite  films
with better crystallinity, morphology, and higher range of ab-
sorption are the foundation of efficiency.

The  first  working α-CsPbI3 PSCs  with  a  PCE  of  2.9%  was
fabricated  in  low  temperature  (100  °C)  by  Snaith  and  his  co-
operators via a small amount HI additive adding[42]. Many rele-
vant  works  have  been  done  to  boost  its  performance.  Uddin
et  al.[61] and  Kim et  al.[62] used  HI  to  modify  the α-CsPbI3 film
morphology  and  boost  its  PCE  to  6.44%  and  4.88%,  respect-
ively.  Later,  Zhao et  al.  discovered  that  PbI2.xHI  could  reduce
the  crystallization  energy  barrier  for α-CsPbI3 phase.  They
used  PbI2.xHI  assist  with  two-dimension  EDAPbI4 perovskite
to  stabilize α-CsPbI3 phase  and  avoid  lattice  distortion.  Fi-
nally, α-CsPbI3 phase  based  on  the  EDAPbI4 passivation
showed  a  record  PCE  of  11.8%  together  with  superior  stabil-
ity,  as  shown  in Fig.  4(a).  The α-CsPbI3 phase  perovskite  kept
its  structure  after  annealing  at  100  °C  for  more  than 150  h
and stable at RT for months[78].

Compared with HI, the absence of H2O molecules in HI hy-
drolysis-derived intermediate can optimize the perovskite crys-
tallinity  and  morphology.  Chen  and  his  cooperators  replaced
PbI2 with HPbI3 in fabricating stable α-CsPbI3 film. They found
that  the  bandgap  was  shifted  from  1.72  to  1.68  eV  owing  to
formation  of  tensile  lattice  strain.  Finally,  a  HTL  free α-CsPbI3

was obtained with a higher PCE of 9.5%. Besides,  the optimal
device  showed  enhanced  stability,  which  maintained  90%  of
its  initial  PCE  under  illumination  for  more  than  3000  h  in  dry
environment,  as  shown in Fig.  4(b)[68].  Then,  organic  terminal
groups were widely  used to  assist  HPbI3 and further  improve
α-phase  CsPbI3 stability.  Zhu et  al.  introduced  DETA3+ addit-
ive  into  the  HPbI3 containing  precursor  to  stabilize α-CsPbI3

perovskite  phases.  DETA3+ has  NH3
+ or  RHN2

+ group,  which
could combine with I– or [PbI6]4– and avoid octahedral tilting.
Besides,  oil-wet  (hydrophobic)  hydrocarbon chains  of  DETA3+
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Fig. 3. (Color online) (a) Schematic illustration the fabrication process of CsxDMA1–xPbI3. Reproduced with permission[72]. Copyright 2019, Elsevier
Inc Publications. (b) Schematic diagram of using DMAI additive to form CsPbI3 films. Reproduced with permission[74]. Copyright 2019, Wiley-VCH
Publications. (c) The changeable component of DMAI-fabricated perovskite versus annealing temperature. Reproduced with permission[75]. Copy-
right 2020, American Chemical Society Publications. (d) Schematic diagram of DMAPbI3 synthesis process and the information of corresponding
perovskite. Reproduced with permission[76]. Copyright 2019, Wiley-VCH Publications.
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increased the CsPbI3 humidity-resistance. Ultimately, the optim-
al device kept its structure for more than 6 h in a humid envir-
onment  (~30  °C,  60%–70%  RH),  while  the  reference  device
changed its  color  from black to yellow in the same condition
in  55  min,  indicating  a  phase  transition[67].  Zhao et  al.  fabric-
ated  HPbI3+x to  form α-CsPbI3 perovskite  film.  With  the  help
of  PEAI  post-treated  on  the α-CsPbI3,  superior  PCE  of  13.5%
was obtained with improved stability. Because of PEA+ termin-
ated  on  the  CsPbI3 surface  and  did  as  a  capping  layer,  PEA+-
CsPbI3 remained  stable  structure  after  80  °C  annealing  for  7
days, while the pure one degraded into non-perovskite in the
same condition, as shown in Fig. 4(c)[79] .  Han et al.  added or-
ganic  terminal  groups (OTG)  into CsI  and HPbI3 precursors  to
design an inverted planar CsPbI3 PSCs. They report that OTG in-
duced  a  steric  hindrance  and  suppressed  octahedral  [PbI6]4–

tilting.  Moreover,  OTG passivated the  surface  electronic  traps
states  to  further  increase  its  performances.  Finally,  the  inver-
ted  planar  OTG-CsPbI3 PSCs  showed  the  highest  PCE  of
13.2%  and  retained  about  85%  of  its  initial  PCE  for  30  days
at  RT,  while  the  reference  device  degraded  completely  in  3
weeks, as shown in Fig. 4(d)[80].

5.2.  Metastable (β- and γ-) phase CsPbI3 based PSCs

Recently,  the  CsPbI3 films  fabricated  by  HI  hydrolysis-de-
rived  intermediate  were  proved  metastable  phases  (com-
bined β-phase CsPbI3 with γ-phase CsPbI3).

The β-phase CsPbI3 can also  be formed at  low temperat-
ure  and  show  more  stable  perovskite  structure  than α-phase
one.  However,  it  is  difficult  to  deposit  and  stabilize  its  per-
ovskite structure[81].  Zhao et al.  adopted PbI2·DMAI and CsI as
precursor to fabricate stable β-phase CsPbI3 with stable struc-
ture.  Furthermore,  they  used  choline  iodine  (CHI)  to  passivi-
ate the surface trap states and aligned the energy level in the
TiO2/β-phase  interface. β-phase  CsPbI3 PSCs  has  a  particu-
larly high PCE of 18.4% with distinguished ambient stability be-
cause  of  PbI2·DMAI  and  CHI.  The  stability  of β-CsPbI3 PSCs
were  greatly  improved:  it  retained  92%  of  its  initial  PCE  after

500 h illumination at the maximum power point, as shown in
Fig. 5(a)[73].

The γ-phase  CsPbI3 is  the  most  stable  black  phase  be-
cause  of  its  lowest  dissociation  energy[82].  Hence, γ-phase
CsPbI3 was systematically researched to boost its stability and
performance.  Hu et  al.  used  HI  to  fabricate  high-quality
CsPbI3 film.  After  that,  they  introduced  a  small  amount  of
H2O  into  precursor  to  induce  a  proton  transfer  process  in
CsPbI3 film,  which  could  manipulate  the  grains  size  and  im-
prove  stability  of  perovskite.  When  stored  in  ambient  condi-
tions,  the optimal  device  showed no drop of  its  performance
while  the  reference’s  PCE  was  greatly  degraded,  as  shown  in
Fig.  5(b)[83].  Then,  Nazeeruddin et  al.  developed  a  soft  tem-
plate-controlled  growth  method  to  fabricate  pinhole-free γ-
phase  CsPbI3 film,  where  (adamantan-1-yl)methanammoni-
um  (ADMA)  acted  as  a  template  and  ionized  by  HI.  They
pointed  that  ADMA  absorbed  on  CsPbI3 surface  and  induced
a  steric  effect  to  further  increase  the  nucleation  rate  at  the
initial  stage  of  CsPbI3 formation.  Taking  into  account  of  con-
trollable  nucleation  rate  and  excellent  morphology,  superior
PCE  of  16.04%  was  obtained  with  improved  stability  (drop
only  10%  after  continuous  light  soaking  and  heating  for
1000 h), as shown in Fig. 5(c)[84].

In  our  recent  research,  we reported the synergistic  effect
of HI and PEAI additives, where HI transferred to an intermedi-
ate  (HPbI3+x)  to  fabricate  distorted  black  phase-based  CsPbI3

thin  films  and  PEAI  induced  a  steric  effects  to  avoid  phase
transition.  It  is  noteworthy  that  the  best  device  maintained
92%  of  its  initial  PCE  for  60  days  storage  in  ambient  (RH  ~
20%–30%, 25 °C),  while the reference one degraded to 0.65%
in  the  same  condition  for  8  days,  as  shown  in Fig.  5(d)[43].
Then,  HPbI3 was  used  to  fabricate  CsPbI3,  assisted  with  anti-
solvent  hot  substrate  spin-coating  method,  and  15.91%  PCE
was  obtained  in  a  humidity  environment  (RH  ~  50%)[85].  Fur-
thermore,  we added a small  amount of  Br- (5%) to the HPbI3-
CsPbI3 lattice  to  increase  phase  stability  by  suppressing  bulk
trap-assisted  non-radiative  recombination  and  relaxing  lat-
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Fig.  4.  (Color online) (a)  The detail  information of PbI2
.HI and PbI2 fabricated perovskite,  inserted pictures are their  digital  photos.  Reproduced

with permission[78]. Copyright 2017, Wiley-VCH Publications. (b) The diagram of PbI2 and HPbI3 fabricated CsPbI3 film, respectively. Reproduced
with permission[68]. Copyright 2018, American Chemical Society Publications. (c) Schematic of PEA+ organic ligand treatment on CsPbI3 thin film.
Reproduced with permission[79].  Copyright 2018, Elsevier Inc Publications. (d) Diagram illustrates the mechanism of with/without OTG passiva-
tion. Reproduced with permission[80]. Copyright 2019, Wiley-VCH Publications.
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tice strain.  The performance was boost  up to a  record PCE of
17.17%  together  with  excellent  stability[86].  Another  work  we
reported was that  3  mol% Cl– was added to the γ-CsPbI3 film
with  a  16.07%  PCE  obtained.  It  not  only  showed  the  excep-
ted increase crystalline dynamics for an excellent CsPbI3 mor-
phology, but also improved crystalline orientation. The Cl-dop-
ing CsPbI3 showed high stability,  for  optimal  device  dropped
only  0.45%  of  its  initial  PCE  under  continuous  light  soaking
for  200  h.  More  important,  non-encapsulated  CsPbI3 PSCs
with Cl– doping degraded only  6% when stored in  RH ~ 30%
for 60 days (the fresh one dropped to 85% of its initial PCE in
the  same  conditions)[87].  We  also  introduced  2%  Pb(SCN)2 in-
to the DMAPbI3 and CsI  precursor to control  the morphology
of  the  CsPbI3 film.  In  this  case,  a  PCE  of  17.04%  with VOC of
1.09 V was obtained[88].

One  of  the  notorious  problems  to  limit  CsPbI3 perform-
ance  is  the  lower JSC compared  with  hybrid  one.  Thus,  we
have  also  developed  several  strategies  to  increase  its JSC,
such  as  harvesting  short  wavelength  ultraviolet  light  (UV-
light)  or  near-infrared (NIR)  light,  and designing device  struc-
ture  to  capture  light.  First,  we  developed  a  downconversion
nanoparticles  (DCNPs)  nitrogen-doped  graphene  quantum
dots  (N-GQDs)  as  an  energy-down-shift  to  harvest  the  short
wavelength  (<  350  nm)  UV-light.  After  combining  it  with
HPbI3-formed γ-CsPbI3,  the  optimal  device  showed  an  im-
proved  short  circuit  current  density  (JSC)  from  18.67  to  19.15
mA/cm2,  with  an  increase  of  2.57%.  Meanwhile,  its  perform-
ance was greatly  increased 3.15%,  from 15.53% to 16.02%[89].
Furthermore, we developed a core-shell-structured upconver-
sion nanoparticles (UCNPs) to capture the NIR light, making it
possible  to  obtain  15.86%  PCE  (noted  that  the  improvement
of PCE is negligible), JSC = 19.17 mA/cm2[90].  We also investig-
ated  the  influence  of  different  haze  glass  substrates,  and
used the optimized one to fabricate CsPbI3 PSCs with 16.24%
PCE. We found that the improvement came from scattering ef-
fect of FTO, refractive index and roughness of each layer[91].

5.3.  Low dimension CsPbI3 based PSCs

Reducing  dimension  can  further  increase  the  stability  of
CsPbI3 PSCs  because  reducing  materials  dimension  can  lead

to  more  symmetric  crystal  structure  and  show  a  smaller  sur-
face energy[92−96].

However, the poor solubility of CsX in the precursor solu-
tion would severely limited the thickness of CsPbI3 film and in-
fluence  the  light  absorption.  Chen et  al.  used  HPbX3 and
CsAc as new precursor to overcome the poor solubility of Cs+

precursor  and  fabricate α-CsPbX3 with  optimal  thickness.
They introduced phenylethylammonium iodide (PEAI) to HPb-
X3 and  CsAc  system  and  further  controlled  the  dimension  of
CsPbX3 from three dimension (3D) to two dimension (2D).  Fi-
nally, a champion PCE of 12.4% in 2D CsPbI3 perovskite was ob-
tained,  and  maintained  93%  of  its  initial  PCE  in  ambient  for
40  days,  as  shown  in Fig.  6(a)[97].  Similarly,  our  group  used
DMAPbI3 as  a  new  precursor  to  fabricated γ-CsPbI3 per-
ovskite,  and  then  we  introduced  a  judicious  amount  of  PEAI
into  the  DMAPbI3 contained  precursor  to  convert γ-CsPbI3

PSCs  into  a  2D  Ruddlesden–Popper  (RP)  structure
(PEA)2(Cs)n−1PbnI3n+1 perovskite.  And  the  optimal  2D  RP  PSCs
with  highest  PCE  of  13.65%,  showed  a  similar  charge  extrac-
tion  and  carrier  lifetime  compared  with  the  3D  samples.  The
thermostability  was tested in N2 filled glovebox.  The superior
2D  RP  PSCs  kept  88%  of  its  initial  PCE  when  stored  at  80  °C
for  15  days,  while  the  reference  3D γ-CsPbI3 degraded  to
69%.  Besides,  2D  RP  PSCs  maintained  its  black  color  whereas
3D γ-CsPbI3 appeared yellow phase  in  RH ~ 30% for  12  days,
as shown in Fig. 6(b)[98]. In addition to PEAI, Chen et al. first in-
troduced  a  novel  dual  ammonium  cation  piperazine-1,4-dii-
um  (PZD+)  to  generate  2D  RP  CsPbI3.  It’s  noted  that  one  of
the  ammonium  groups  coordinated  with  [PbI6]4– octahedral,
and another one interacted with I– to balance charge. Finally,
the  optimized  device  achieved  a  PCE  of  9.39%  and  main-
tained  its  performance  without  decomposition  under  heat-
ing at 100 °C for 24 h[99].

Pradhan et  al.  fabricated stable CsPbI3 nanocrystals  (NCs)
with superior stability by using a higher temperature (260 °C)
than  usual  (160  °C),  and  adding  olelyamine  (OLA)  and  HI  re-
spectively  in  the  reaction  process  (noted  that  only  OLA  or  HI
are  less  efficient).  Taking  the  NMR  analyzation  into  account,
they found that  higher temperature helped the OLA+ ligands
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Fig. 5. (Color online) (a) Schematic illustration of CHI crack-filling interface engineering. Reproduced with permission[73]. Copyright 2019, Science
Publishing Group. (b) Schematic diagram CsPbI3 crystal formation by using HI and H2O. Reproduced with permission[83]. Copyright 2018, Americ-
an Chemical Society Publications. (c) Mechanism of STCG-CsPbI3 film formation by assistant of ADMA molecule. Reproduced with permission[84].
Copyright 2020, Wiley-VCH Publications. (d) The schematic illustration of HI and PEAI do on the CsPbI3.  Reproduced with permission[43].  Copy-
right 2018, Nature Publishing Group.
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to  occupy  the  Cs+ position  on  the  surface  and  further  stabil-
ized  its  structure[100].  To  solve  adverse  shell  ligands  and  un-
stable core lattices in nanocrystals, Choi et al. developed a ra-
tional  core-shell  design  method  in  CsPbI3 NCs.  They  used  a
novel  ligand  named  4-fluorophenethylammonium  iodide
(FPEAI) to enhance the binding force between the ligand and
CsPbI3 NCs and efficient charge coupling between NCs, to in-
crease charge extraction.  Besides,  H2PbI4,  which was synthes-
ized with excessive HI, was used to assist doping Mn2+ ion in-
to  perovskite  lattices  and  to  further  raise  the  performance  of
CsPbI3 NCs  to  13.4%  with  superb  stability  (maintained  92%
of its PCE in air for 500 h), as shown in Fig. 6(c)[101].

6.  Prospects and outlook

Although lots  of  advanced works about HI  hydrolysis-de-
rived  intermediate  have  been  done  to  boost  PCE  of  CsPbI3

PSCs,  its  PCE  still  far  behind  the  hybrid  ones.  Therefore,  we
need to  analyze  the  urgent  problems that  remain  and devel-
op  corresponding  strategies  to  improve  the  performance  of
CsPbI3 perovskites.

Increasing the light absorption. As we show in Table 1,
though the performance of CsPbI3 PSCs has reach 19.03%[74] ,
the JSC (about  20  mA/cm2)  is  still  lower  than  the  hybrid  one.
This  maybe  cause  by  current  loss  and  insufficient  utilization
of  light,  resulting  from  the  relatively  large  bandgap  (com-
pared  with  hybrid  perovskite  films).  Developing  high  effi-
ciency  DCNPs/UCNPs,  to  capture  UV-light  or  NIR  could  be  an
useful solution[90].

Doping X-site halide to improve CsPbI3 PSCs stability.
The  unstable  nature  of  CsPbI3 is  an  unsuitable  tolerance
factor (t), as we mentioned earlier. Partially replacing I– (2.2 Å)
with  smaller  radius  halides,  e.g.,  Cl– (1.87  Å)  and  Br– (1.96  Å)
or pseudohalide SCN– (2.15 Å),  could enlarge t value to reach
ideal one (0.9–1)[32].

Ligand assists to stabilize CsPbI3 crystal structure. Intro-
ducing  ligand  (e.g.,  OTG[80],  poly-vinylpyrrolidone  (PVP)[102],
ADMA[84],  PEAI[79],  and  DETA[67])  into  a  perovskite  precursor
and  inducing  a  steric  hindrance  to  further  stable  CsPbI3 crys-
tal  structure is  a  useful  way to boost  its  stability.  Therefore,  it

is promising to develop and design new ligands.
Increasing the carrier transport for low dimension per-

ovskite. Low  dimension  CsPbI3 tends  to  increase  surface-
area-to-volume ratio and raise the Gibbs free energy to make
the  structure  more  stable[103].  It  is  noted  that  though  low  di-
mension  CsPbI3 can  keep  CsPbI3 structure  more  stable,  the
PCE  of  low  dimension  CsPbI3 is  still  far  below  the  3D  CsPbI3.
Hence,  we  should  pay  more  attention  to  increase  the  carrier
transport for low dimension CsPbI3.

Avoiding  the  disadvantage  of  intermediate. Liu et  al.
claimed  that  intermediates  had  negative  influence  during
low  dimension  perovskite  deposition  process  because  they
slowed  down  intercalation  of  ions  and  increased  nucleation
barrier,  and  further  caused  the  byproduct  formation[104].  Al-
though  there  are  no  negative  effects  on  HI  hydrolysis-de-
rived intermediate so far,  we should be more vigilant  against
HI hydrolysis-derived intermediate.

In  conclusion,  CsPbI3 perovskite,  particularly  the  meta-
stable phases (β- and γ-Phase CsPbI3),  is  a promising material
to  replace  the  unstable  hybrid  perovskite.  Besides,  CsPbI3

PSCs with suitable bandgap make it more suitable to apply in
tandem solar cells and commercialization. Based on these ad-
vantages,  we  conclude  that  CsPbI3 PSCs  maybe  the  main-
stream  research  direction  in  the  near  future,  and  we  should
adopt a positive attitude to it.
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